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I. INTROMJCrION

I. 1 MOTIVATIOt

In this paper, we develop and apply a theory of asymptotic orders of

reachability in linear time-invariant systems parametrized by some small

variable. e. The approach draws in part on the algebraic formulation of (1.2].

To provide a motivation for the key issues in our approach. consider the

following discrete time system as an eamuple:

Example 1.1

x[k~l] . 1 x[k] + [.1]u[k]

This system is reachable but the reachability matrix

[blAb] - 1 1.011
1.01 .03]

is not very far from a singular matrix, in that its condition number is

4
approximately 10 . This leads to numerical difficulties in determining

reachability, as shown in [3]. Also. consider the minimum energy control

problem for this system. The minimm energy control to reach x[2] a [1 0]'

(where ' denotes the transpose) from x[O] a 0 is ul[1 ] a -.5 and u,[2 ] = 1.5.

while the minimu energy control for x[23 a (1 1]' is u2 [11 49.7 and u2 [2] =

-49. This order of mgnitude difference between u1 and u2 is another indication

of near unreachabiltty. Still further indications may be obtained. for example

by considering how smll a perturbation of the system matrices suffices to

destroy reachability (in this case. of the order of 0.01). or by examining the

umntitude of feedback gain required to shift poles by various amounts (in this

case. to move the eigenvalues by 2. feedback gains of mpaitude approximately

102 are required, as illustrated in Example 3.1).
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Our treatment of problems of this type is qualitative rather than numerical

In nature: we assume that small values in the system are modeled by functions of

a small parameter a. which implicitly indicates the presence of different orders

of coupling among state variables and inputs. The formulation that we use

permits the state space to be decomposed according to the "asymptotic orders of

reachability" of different target states. Specifically. we consider continuous

time and discrete time systems of the form

x(t) = A(e)x(t) + B(a)u(t) (1.1)

x[k+l] = A(a)x[k] + B(e)u[k] (1.2)

Here A(e) and B(s) in general have entries from the field L(e) of functions t(e)

that have asymptotic expansions (see [4]) of the form:

e(e) =: e 40 (1.3)

for some finite k. so.

A(e) : Ln(,) -, Ln(e). B(e) : Lm(a) -Ln(e) (1.4)

(Strictly speaking, we should write - instead of = in (1.3) to emphasize that

the series on the right is asymptotic and not necessarily convergent [4]. but

this abuse of notation is comon.)

Defining these systems over L(e) permits us to exmine the effect or

necessity of high gain feedback. However, many of our results will involve

matrices over the ring T(e) of functions t(e) that have asymptotic expansions of

the form:

t(e) = 2 tie1  (-40) (1.5)
0

For verification that T(a) is a ring. see [4. p. 15]. The ring T(e) is easily

shown to be a principal ideal domain and L(a) is its field of fractions. This

allows us to use various results on matrix canonical forms such as the Smith

2
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Form (5. App. B.2] in our development. (The symbols L(e) and T(a) have been

chosen to serve as mnemonics for "Laurent-series like" and "Taylor-series

like".)

The above formulation strongly suggests connections with work on

parametrized linear systems [6.7]. and more generally with studies of systems

over rings [8.93. The approach in this paper owes something to our earlier work

[1.2] on an algebraic framework for multiple time scale decomposition in

singularly perturbed systems, and therefore takes a relatively independent tack.

The Important task of making and exploiting explicit connections with the

literature on systems over rings is left to future work. (Sontag [10] has shown

us that explicit connections are not only possible but my be quite fruitful.)

This work was particularly motivated by the numerical problems encountered

in various pole placement methods and in evaluating system reachability. Pole

placement and related numerical issues are addressed using various approaches in

the current literature [11-14). In multi-input systems, unlike single-input

systems, the feedback mtrix that produces a given set of poles is not unique.

and the additional degrees of freedom may be used to attain other control

objectives (see [14]). One my. for example. attempt to minimize the maximum

feedback gain; [12] addresses this problem via numerical examples involving

balancing [15] the A and B matrices and redistribution of the feedback task

among the inputs. These exmples contain some intuitive ideas, but have not led

to systematic procedures that work well for well-defined and substantial

classes of system. One of our objectives here is to suggest an analytical

approach to understanding and structuring feedback gains for pole placement.

Another area of numerical work involves criteria to measure

controllability. Boley and Lu [16] use the "distance to the nearest

3



uncontrollable system" as a criterion. They define this by the minimum norm

perturbation that would make a system uncontrollable. They also relate this

concept to state feedback by measuring the amount that the elgenvalues move due

to state feedback of bounded magnitude. Connections may also be made to the

literature on balanced realizations. (15]. where the singular values of the

controllability Grammian are used to indicate nearness to uncontrollability.

The issue of controllability in perturbed systems of the form (1.1) has

been examined by Chow (17]. He defines a system to be strongly controllable if

the system is controllable at a a 0. Otherwise. he calls it weakly controllable

and concludes that pole placement of such systems will require controls with

large gains. Chow looks at systems with two time scales (slow and fast), and he

proves that a necessary and sufficient condition for such a singularly perturbed

system to be strongly controllable is the controllability of its slow and fast

subsystems.

Our analysis goes further than Chow's in that we examine the relative

orders of reachability of different parts of the state space. As already

mentioned, the methods we use have some similarity to those used by Lou et al.

[1.2]. who relate the multiple time scale structure of the system (1.1) to the

Invariant factors of A(&). when this matrix has entries from the ring of

functions analytic at a = 0. The results in [1.2] actually hold for A(e)

defined over the considerably more general ring T(e) used in this paper, though

this fact was not recognized there. The Smith decomposition of A(e) plays a key

role in the analysis of [1.2]. while the Smith decomposition of the reachability

matrix is central to the development in this paper. While the primary focus of

the work in [1.2] is on time scale structure, some attention is paid there to

control. In particular. [1] gives results on the use of feedback in (1.1) to

4
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change the time scale structure of the system. The work in [18] may be seen as

a continuation of the work in (1.2] in that it analyzes the effect of control

and feedback on the system of (1.1). This paper is based on the work in [18].

1.2 OUTLINE

Throughout the paper, 'tk(a) will denote the k-step reachability matrix:

19~)- CB(a) I A(&)E(a) A . Ak-l(6)B(#)] (1.6)

where A(a). B(a) are as in (W1e)-(l.5). *. shall simply write *(a) for (e),

and call this the reachability matrix. We also assume throughout that

(A(&).B(e)) is reachable for all a C (0.&). a4+. or equivalently I(a) is full

row rank for all a 6 (O.a), a4E9 + .

In Section II. we develop a theory of orders of reachability. We start

with discrete time systems and illustrate that the orders of reachability can be

recovered from the Smith decomposition of the reachability matrix. We define a

standard form which displays these orders explicitly. Also, we show that

equivalent results hold for continuous time systems. In Section III. this

theory is extended to pole placement by full state feedback for systems with

entries over T(a). We also provide a computationally and numerically reasonable

algorithm for pole placement. Section IV develops connections with Willems'

work on "almost invarlance [19.20]. We show how to find an input that steers

the trajectories of a system arbitrarily close to an almost (A.B)-invariant

subspace and show that the subspace that a sequence of (A.B)-controllability

subspaces converges to is almost (A.B)-invartant. In Section V. we suinmrize

our results and suggest problems for further research.
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II. ORDERS OF REAO{ABILITY

II.1 ed-REACHABILITY FOR DISCRETE TIME SYST7EMS

We start by developing our theory of asymptotic orders of reachability for

systems of the form (1.2) in an analogous way to existing linear control theory.

In order to provide a motivation for our approach, let us start with the

following counterpart of Example 1.1:

Examle 2.1:

xtk+lj 1 [ ]x"k] + [']u[k]

so

This system is reachable for all a C (0.2). The minimum energy control sequence

needed to go from the origin to xl[2 ] = [1 0]' is ul[l] = -1/(2-&) and ul[2 ]  ".

3/(2-&). which are 0(1), [4]. The minimum energy control sequence for x2(2] =

[1 1]' is u2C11 = (- 11)/&(2-e) and u2(2] = (2A-l)/&(2-&). which are O(1/c).

This characterization of target states by the order of control sufficient

to reach them is now generalized as follows for the discrete time system (1.2):

Definition 2.2: x(e) C Tn(a) is ai-reachable if there exists an 0(1/cj ) input

sequence 1(&) 2 Eu'[n-1] ... u')O]]' such that x(a) is reached from zero in n

steps using (e) (i.e. x(e) =

Let Ij be the set of all eJ-reachable states, then K0 C 3: C C ... and Ij is

a T(e)-submodule of TU(C). We term XJ the ed-reachable submodule.

6
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Note that if x(a) is ea-reachable, then (l/e)x(e) is not necessarily

a -reachable. Thus if we had considered target states In L(a) in Definition

2.2. then the set of ai-reachable states would not be L(e)-subspaces.

In Example 2.1. 0 = Im(1 0J' + &T2(c). II = 2!2 T2 (c).

An interesting property of the set of as-reachable submiodules is that all

the structure is embedded in the aO-reachable submodule. First of all, note

that SC0 is the restriction to Tn(e) of the Image of the reachability mtrix

under the set of all control sequence vectors N() in T""(&). Also, the

ta-reachable submodule is simply obtained by scaling the aJ- 1-reachable

submodule by I/. To state this formlly:

Proposition 2.3: %O - {((e)Tam(e))rrTn(e) and = 1(!j-l n eTn(a)) =

IIj-fl eITn(a)). for nonnegative integers 1. j and jji.

Proof: By Definition 2.2. {10 W(e)Tm(a)}r.nCe), or in general

-j = { (C)I I1(C)}f€(). Then.

1 {J- i()Tn~)}lr(e

The structure of the es-reachable submodules is not always as easily

obtained by inspection of the pair (A(e),B(a)) as it was in Example 2.1. To

illustrate this. consider an a perturbation of Example 2.1:

Example 2.4:

for which

*() [I 1+a

7



This system is reachable for all a C (0.-). In this case, we find that xi[2] =

[1 0)' is &-reachable, and x2 [2] = [1 1]' is & -reachable. Therefore. even an

perturbation May cause drastic changes in our submodules.

11.2 SMITH DECOMPOSITION OF Te()

The key element in our results is the Smith decomposition of %(&). since in

effect this tells us how *(a) becomes singular as eo. The nxw matrix V(6).

which has been assumed to have full row rank for aE(O.a). has a Smith

decomposition [1. 2. 5. 21, 22]

*(a) = P(&)D(a)Q(a) (2.1)

where P(a). nxn. is unimodular (detP(O)iO). Q(&). nxmn. is full row rank at e--O.

hence, right-invertible over T(&); and

D(a) = diag{JhI , P -h l , ... , Io. kI } (2.2)

is nxn where I denotes a pixpi identity matrix with pi-O corresponding to

absence of the i-th block. and with Pk#O. We shall term k the order of

reachablity of the system, for reasons that will become clear. The indices pi.

and hence D(a). are unique. though P(a) and Q(a) are not.

For the remainder of this section. we will assume, without loss of

generality, that h=O as this can simply be achieved by scaling the input by a.

Now. from Proposition 2.3 and Equation (2.1). 5 J = P(&)04J where
= I + a + + kl I + ak-Tn(') (2.3)

j J+1 ~ k-1

and £i Im(In1 0]'. n, = po+ ... +pi" In fact VJ is Just the ed-reachable

submodule of the new description obtained through similarity transformation by

P(&). and its structure immedlately follows from the fact that the reachability

matrix of the transformed system is D(a)Q(a) with Q(a) right invertible over

T(e). This transformed system is examined further in the next subsection.
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11.3 STANDARD FORM

Consider a pair (A(&).B(&)) with a Smith decomposition of its reachability

matrix defined as above. We will term such a system an e -reachable system with

(reachability order) indices n 0. ... . . Let A(e) M P- (e)A(e)P(e) and () =

P-1 ()B(e). The pair (A(&).B(e)) will be called a standard form for

(A(e).B(t)).

The system in Example 2.1 is already in standard form. because it has a

Smith decomposition with P(&)=I. For the system in Example 2.4. a Smith

decomposition of the reachability matrix is:

1 0 &r 0i-1l

The structure of D(e) uncovers the previously hidden a structure. To see this

more explicitly, transform the system by P(a):

y[k+l] = [+& 2'ehk] + ]uk

A standard form for a system is termed a Provr standard form if A(e) has

the following structure:

A0 O(&) I.Aou.ni(&) . . . 1/a kAk(a) }po

A) 0 (0) A11 (e) . . . "/e k (A() )Pk

(a) = ' e) and

where the Ai(a ) are over T(e). and n 2 pj. Note that in this case. due

J=0

to the structure of (e) and f(e). satisfying our assumption that h=O in (2.2)

only requires scaling 9(a) or equivalently B(a) such that its leading order term
0J

is a0 . Then. !(a) has the structure:

9 ,,



BO(&' )Po
B0l(&) )p0

B(e) -- (2.4b)

B-k(e) )p k

Example 2.1 and the transformed version of Example 2.4 are both in proper

standard form. In fact. the next result shows that finding one proper standard

form is enough to conclude that all standard forms of a pair are proper:

Proposition 2.5: If a pair (A(&),B(a)) has a proper standard form. then all

standard forms of (A(a).B(a)) are proper.

- -1Proof: Let P - P )D()QlCe) = P2C )D(&)Q2Ca), then Ai'() = Pile)A(&)Pi~e),

Bi(e) = Pil(e)B(e) for i=1.2 are two standard forms. Suppose that the pair

(A1(e).Bl(e)) is a proper standard form. Let Aia) = D - (e)A1 ()D(e).

B D(e)B() for i=1.2. Note A,(&) and Bl(e) are both over T(a). We

wish to show that the same is true for A2 (e) and B2 ( ). Let

R(e) = -I(e)P 2 1()PI(e)D(a), then R(e) is invertible over L(a). and

Q2 (&) = R(e)Q1 (&). But then R(a) = Q2 (e)QI(&) and R-(e) = Ql(a)Q2 (a), where

Qi(&) denotes the right inverse of Qi(e), which exists over T(a). Thus, R(a) is

unimodular. Since (A1(&).B 1 (e)) is over.T(a) and A2 (a) = R(&)A 1(C)R- (a).

B2(a) = R(e)BI(&). the pair (A2 (e).B 2 (e)) is also over T(a). Therefore.

(A2(&),B 2 (6)) is a proper standard form.

A pair (A(e).B(a)) is termed proper if it has a proper standard form.

Thus. the systems in both Examples 2.1 and 2.4 are proper. It turns out that

the condition that the coefficients of the characteristic polynomial of A(&) are

over T(a) is necessary and sufficient for a system to be proper. In general. we

have the following:

" 10.4 . . 'L '." ""
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Proposition 2.6: The following statements are equivalent:

1. (A(e).B(a)) Is proper.

2. '1 (e)=EB(e)I ... A -l(e)B(e)] for all positive integers I is over T(e). To

say this more simply, e,(e) is over T(a).

3. The coefficients of the characteristic polynomial, o(A(e)), of A(e) are over

T(a).

Proof (1-.2) Follows from the definition of a proper form and the structure in

(2.4).

(2-.3) It is not hard to show, using Theorem 1.15 of [8]. that T(e) is completely

inteitrally closed. Since i(e) is over T(e). the map {AI- (e)B(c)} 1= is over

T(e). Finally, by invoking Theorem 4.17 of [8]. we achieve the desired result.

An alternative proof may be obtained by working with the Jordan form of A(e).

and using results in [23].

A(e) = D-1e)A(e)D(e), B(c) D (e)B(e). Since IG (e)=Q(e) is over

T(e). B(e) is also over T(e). Since the coefficients of o(A(e)) are over Te).

it follows from the Cayley-Hamilton theorem that *.(e) is over T(e). In

particular. A(e)n(e) is over T(e) and since Q(e) is right invertible over T(e).

A(e) is over T(e). Therefore. (A(e). B(e)) is a proper standard form.

As an immediate consequence of Statement 2 of Proposition 2.6 we have the

following important property of proper systems:

Corollary 2.7: Given a proper pair (A(&).B(&)). x C XJ iff x is reachable with

O(l/e) control in p steps, for all p~n.

For proper systems, therefore. It suffices to work with the Smith structure of

W n(a) = 9c

Let us also supplement Proposition 2.6 with the following:

Corollary 2.8: %(e) is over T(e) iff Itn+(a) is over T(e).

n11
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Proof: (-) Since Inl"( )  [Be) I e€") n (a). and *nCf) is right Invertible

over T(e), A(e) are B(ce) are over T(e). Thus. *.(e) is over Tee),

C-) Trivial.

The standard form will prove to be very useful to us. especially for

finding feelback to place eigenvalues (Section III). In the Appendix we develop

an algorithm to get to a standard form without first constructing the

reachability matrix and then explicitly determining its Smith decomposition in

order to obtain the transformation matrix P(a). The algorithm works directly on

the pair (A(e).B(&)). and is a natural extension of the recommended procedure

[3] for testing reachability of a constant pair (A.B).

11.4 CONTINUOUS TIME

A natural counterpart to Definition 2.2 for continuous time is as follows:

Definition 2.9: x C Tn(e) is e -reachable if 3 T + and u(t) E l/eJTm(e)

V tE[O.T] such that x(T) = x. with x(O) = 0.

Let 3J be the set of all 6J-reachable states, then 10 C 51 C 22 C ... and Xj is

an T(e)-submodule of Tn(a). We term 20 the ed-reachable submodule.

These submodules have properties analogous to those of discrete time as the

following proposition and corollary show (the proofs are given in detail in

[18)):

Proposition 2.10: Given a continuous time system descibed by the pair

n

(A(&).B(e)). then °=<A(&)I! >rn(a) where <A(ai12 >IA -e)g and 9 is the

image of B(e) over T(a).

12



Corollary 2.11: 0 P(=p)D(e)Tn(a) where *(a) = P(e)D(e)Q(6) is a Smith .

decomposition for the reachability mtrix.

Using the Iterative relation !rJ+'=-( j~lrun(6)). (Proposition 2.3). we can

recover all the other reachability submodules from the Smith decomposition of

the reachability matrix and Corollary 2.11. Therefore. all our results for

discrete time also hold for continuous time.

One Important difference exists, however. By an 6-dependent change of time

scale in continuous time. we can satisfy Statement 3 of Proposition 2.6. so

there is no loss of generality in assuming that a continuous time system (1.1)

is proper. In discerete time, by contrast, an assumption that (1.2) is proper

is restrictive.

13
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III. SHIFTING EICVALUES BY 0(1) USING FULL STATE FEEDBACX

In this section. we restrict our attention to reachable systems over T(e).

These systems are proper and all eigenvalues of A(e) are continuous at &--0. We

address the problem of arbitrarily shifting the limiting values of these

eigenvalues as e-4O. using full state feedback. In other words, we wish to find

F(a) over L(e) such that AF(a) = A(&)+B(a)F(e) has the desired eigenvalues as

6-10. 1

Exmle 31: The eigenvalues of A(a) in Example 2.1 are at X=1+0(e) and

X2=2+0(&). A state feedback of [2 4] shifts these eigenvalues to 3+0(a) and

2+0(e). It is not hard to see that there is no 0(1) state feedback that can

arbitrarily place X2 as &-40. However, a state feedback gain of [5 -l/e] shifts

the eigenvalues to 3+0(&) and 4+0(&). Here both eigenvalues are moved as e-(O.

but an 0(1/c) feedback gain has to be used. Note that the closed loop system A

A61-1/el. P
AF.(eB e) J,

is not over T(a) but it is &-reachable with the same indices. no=1 and nl=l, as

the original system, and is in proper standard form.

We shall now show that, for systems over T(a). the order of feedback gain

necessary and sufficient to place the limiting values of all eigenvalues as e-4

is directly given by the order of reachability of the system. Let us start by .le

looking at aO-reachable systems. In all that follows. A denotes a

self-conjugate set of n eigenvalues. M(A) denotes the spectrum of A. and Z

denotes the set of all integers. Define

a =min {ri VA. 3F(a) a 0 (1/r ). s.t.X(A(e)+B(&)F(e))I &=A) (3.1)
r4EZ

Hence a is the smallest order of feedback gain that will produce arbitrary

14
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I
placement of the limiting elgenvalues as e-4.0

0Lemnma 3.2: The pair (A(&).B(e)). over T(e). is a -reachable Iff a=O.

Proof: (-,) If the pair (A(a).B(a)) is 0-reachable, then. C(&)[6=0 has full row

rank. Thus, the pair (A(O).B(O)) Is reachable, and VA. 3F:mn _, n .. t.

X(A(e)+B(&)F)I e_0 = X(A(O)+B(O)F) a A. Hence acO. Now assume a<O. Then.

lim F(e) = 0 for those F(a) of 0 (I/ia) that produce arbitrary placement of the6 10

limiting elgenvalues as e-10 according to (3.1). But then lim (A(e)+B(&)F(E)) =
C10

A(O). so no limiting elgenvalue as a-,0 is moved, which Is a contradiction. We

conclude that a=O.

(#-) Conversely. assume that a=O. then VA. 3F=F(e)= s .t. X(A(O)+B(O)F)=A.

Thus, the pair (A(O).B(O)) is reachable, and V(&)I has full row rank. so the

pair (A(a).B(a)) is a0-reachable.

Proposition 3.3: The pair (A(&).B(&)). over T(a). is a k-reachable iff a = k.

Proof: (-.) If the pair (A(e).B(a)) Is a -reachable. then the pair A(e) =
-11 - -1 - 1 0-
D(&)P-()A(a)P(&)D(&). B(a) = D-()P-(a) is a -reachable and is over T(e)

(Proposition 2.6). Thus, by Lem 3.2. VA. 3 an 0(1) F(a) s.t.

-- 1 .. I..kX(A(6)+B(C)F(&)) 1 *, A. Lot F(a) a F(&)D -(&)P -(a). then F(a) is o(l/a').

Since (Aj(&).B(,)) is proper, the coefficients of a(Aj(a)) are over T(a). Thus,

1i0 X(A(&).B(a)F()) = li. X(A(a)+B(&)F()) (3.2)CIO a10 .

and a~k. To see that the equality must hold. note first that

AO.O(a) *e. 1 (6) . kA A(a)'
k- 1

A1 o(&) A,.,(&) a A lk(&)(3= ') (3 .3)

Ak.O.() Ak.l(&) A k.k(C).

n-nk- I coluns %

where the A (a) are over T(a). Now. if a<k. then the last n-nk_ I columns of %

15.
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F(O) = llm F(e)P(e)D(e) = 0 for those F(e) of 0(1/e ) that produce arbitrary
elO

elgenvalue placement according to (3.1). But then

lim(A(e)+B(&)F(e)) A [: (0] (3.4)

where *' denotes some constant entries, and the limiting eigenvalues

corresponding to Ak.k(e) are not moved, which is a contradiction. We conclude

that a=k.

(4-) Clearly. the pair (A(e).B(e)) is e -reachable for some J. By the first part -

of this proof. a=j. Hence j=k and the pair is ak-reachable.

o0
Note that if some pair (A(e).B(e)) over T(e) is e -reachable then the

closed loop pair (AF(e).B(e)). where AF(e) = A(e)+B(e)F(e), is e -reachable for

all F(e) of 0(l). Thus we have the following result:

Corollary 3.4: Given a pair (A(e).B(e)) over T(e). the es-reachability indices

n i as defined in Section 11.3, are invariant under any feedback of the form

F(e) = F(e)D (&)P (a) where F(a) is 0(l). Also, the closed loop pair is

proper.

The ei-reachable submodules of the standard form are uniquely determined by

the indices, and the dJ-reachable submodules of the original system are uniquely

determined by the ed-reachable submodules of the standard form, via P(e). Thus:

Corollary 3.5: Given a pair (A(e).B(a)) over T(e). the es-reachability

submodules are invariant under any feedback of the form F(e) = F(e)D-I(e)P-I().

where F(e) is 0(l).

For the more general class of proper systems over L(e). the orders of

feedback gains do not necessarily match the orders of reachability. Let us

consider the following example:

16
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Example 3.6: The pair

0r 01A(&) = 0 . B(e) 0 
N

corresponds to an a-reachable system in proper standard form. Let

F(e) = f f10

where the f are all scalar constants, then

det(XI-A.(e)) = x3-(r+f 4  (flf 4 -f2f3 -2)X+2fl. Clearly. fiCM can be chosen

appropriately to match any third degree polynomial with real coefficients.

Therefore all eigenvalues of A(e) can be arbitrarily moved as e-O using only

0(1) feedback gains. What happens in this example is that an 0(1) gain for the

third state component produces an 0(1/e) input for the second component.

Therefore. even with 0(1) gains, the input values themselves will be 0(1/e). as

would be expected when producing shifts in the limiting eilgenvalues for this

6-reachable system.

The overall effect of 0(1) feedback on the eigenvalues. even for systems

over T(e). is a more subtle issue than the order of feedback necessary to shift

the limiting eigenvalues. Consider the following example:

Example 3.7: Let0 1].
() = a J, B(a) . [

The reachability order Indices are noal and nl=2. The elgenvalues of A(&) are

at r-A. Feedback of [-1 -1] moves the elgenvalues to -1 and -a. Thus. the

effect of feedback is larger than O(). namely 0(I/a). (It is worth noting that

the original system did not have well-behaved time scale structure in the sense

of (1.2]. and that the feedback produces well-behaved time scale structure.)

We leave these problems for further research. Section V suggests some

17
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potential extensions.

An extension of Algorithm A.3 can be used to compute the feedback matrix

necessary to shift eigenvalues by some desired amount. Application of Algorithm

A.3 produces a pair (Ak().Bk(e)). where Ak(e) = S -(e.)A(e)S(a). Bk(e) =

S- (e)B(a). where (Ak(O).Bk(O)) is reachable and S(e) is the product of all the

similarity transformations used to achieve the final pair. From the pair

(A k(O).Bk(O)). we can compute a feedback matrix F such that the eigenvalues of

AkF(O) = Ak(O) + Bk(O)F are as desired. We have that X(AkF(f)) 1_O--X(AkF(O))

and that (AkF(e).B(e)) is proper. Let F(e) = FS- (e) and AF(a) - A(e) +

B(a)F(e). Since S(a) is invertible for &C(O.a) for some aCR. (AF(e).B(a)) is

also proper. Therefore, as in the proof of Proposition 3.3. the eigenvalues of

AF(e) are as desired.

This algorithm was applied in [18] to a fifth order, weakly reachable

system over R with one input. The system was first parametrized by replacing

certain small entries by (constant multiples of) powers of e. The feedback gain

to place the limiting eigenvalues calculated for the parametrized system by the

above approach was evaluated at the specific value of a corresponding to the
p.

original system. This approach produced far better numerical results than

calculating the feedback directly for the given system. Similar concerns have

been expressed by authors interested in numerical issues of multivariable pole

placement for linear time invariant systems (as explained in Section 1.1). Our

approach would attempt to address those issues by scaling the pair (A.B)

appropriately. Unfortunately. (A.B) has to be parametrized by a first if a does

not represent some (small) physical parameter. Further study of this problem is

left for future research. though some heuristic suggestions for parametrizations

are made in Section V. S
is-

:S
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IV. ALMOST INVARIANT SUBSPACES

IV.1 (A(a).B(e))-INVARIANCE AND ALMOST (A.B)-INVARIANCE

In this section, we use our framework to provide some new insights on the

notions of almost (A.B)-invariance and almost (A.B)-controllability. introduced

into the geometric approach to linear systems. [24]. by J. C. Willems [19].

These concepts have applications to disturbance decoupling, robustness, noisy

gain stabilization and cheap control.

To provide orientation and give the flavor of our approach, we consider the

following example: -0-,

Example 4.1: Let
B=6

A = B~
11o01. 0

It is easy to see from the results in [19] that Ia=Im[l 0]' is an almost

(A.B)-invariant subspace. Consider the L(e)-subspace. I . generated by [I e]'. .- i

Since w-

this subspace is an (A.B)-invariant L(e)-subspace. [24]. As a -* 0.

I -. Im[l 0]' (over R). which is the almost (A.B)-invariant subspace identified

above. So we have found an (A.B)-invariant L(e)-subspace I that converges

asymptotically to an almost (A.B)-invariant subspace. Using the relation Y
C-1/a) = -F(e)[l e)' with F(a) a [1/& 0]. 1 Is AF(e) invariant, where

a%

A.(a) = A + BF(e) . [%a o].

Furthermore. I is a coasting subspace. [19]. i.e. it is (A.B)-invariant but has

no (A.B)-controllable part, whereas Ia is a sliding subspace. [19]. i.e. it is

almost (A.B)-invariant but it has no (A.B)-invariant part.

Ile,

19 0
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Note that an elgenvalue of AF(e) -. +" as e-40. On the other hand, consider

the (A.B)-invariant L(e)-subspace I generated by [1 -e]'. As &-o0, I -#I also.e a a

By going through the above procedure, we get F(e) = [-lI/e 0] and

A~(e = [1/6 0]
D1 0

Now the eigenvalue of AF ,(6) that blows up approaches -. as e-0.

We proceed with proving some results related to the above observations:

Definition 4.2: A subspace 1 C Ln(e) is (A(e).B(e))-invariant if a F(e): Ln(e)

Lm(a) s.t. AF(e)l, C I.. where AF(e) = A(e) + B(&)F(e). We denote the family

of (A(a).B(e))-invariant L(e)-subspaces by V

A straightforward consequence of this definition is the following well

known result [24]:

Proposition 4.3: 1 6 V iff A(&)l C I + I. where S = B(e)Lm(e).

Let I C Ln() and V(e)=[vl(e)l ... Iv (e)] be a matrix such that its

columns form a basis over L(a) for I . Let V(&)=Pv(e)DV(&)QV(e) be a Smith

decomposition of V(e) such that PV(&) is nxi. DV(e) and QV(e) are Wx . Then the

columns, pi(e). of PV(e) form a basis over L(a) for I such that pi(&) C Tn(,)

and the columns of Pv(O) is a basis over R. We use this for the existence of

the desired basis in the following definition:

Definition 4.4: Let I C Ln(e) and {v1 (e). .... v (e)) be a basis over L(a) for

I such that vi(e) C Tn(e) and the set of vectors (vl(O)..... v (0)) forms a

basis over R for some i C e. Then we say that "Y converges asymptotically to
ae

I or I P-1 (this is convergence in the Grassmanian sense).
a ee a

One can always construct a matrix W(e) over T(a), such that W(0) = I and w

vi(6) = W(e)vi(O). Thus an alternate representation of I would be W(e)la . We
e a

20
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use these notions to connect our results to their counterparts in [19] and [24].

The following result enables us to establish a connection between our

framework and the notion of almost (A.B)-invariance. It provides a method to

compute approxinations for the distributional inputs required to steer the

trajectories of an almost (A.B)-invariant subspace exactly through that

subspace. Using these high gain feedback approximations one can steer

trajectories arbitrarily close to an almost (A.B)-invariant subspace.

Denote the family of almost (A.B)-invariant subspaces by V . We then have

the following result:

Proposition 4.5: For a pair (A.B). if I CV then 3 I C'V such that I - 1a-a a-a0 a 6-4 a

The proof is very similar in principle to that of Willems [19] and it is

given in detail in [18]. However. note that the converse of the above

proposition does not hold. though [19] claims that it does. To illustrate this.

consider the following'example:

Examle 4.6: Let

i3 0 3 3"

Consider I = (vl(e).v 2 (&).v 3(e)) where v,(e) = [1 0 0 0 a 0]'.

v2 (a) a [00010 0J', v3(e) = [0 1 0 0 0 1]' and {.} denotes span over L(e).

I 9 V and I -- * s where se a (V(O).v2 (O).v3 (O)) and (.} denotes span over IR.

But 9 is not an almost (A.B)-invariant subspace (this can easily be tested using

ISA and ACSA [19]).

Willems [19] poses the problem of finding an input that steers the

trajectories of a system arbitrarily close to an almost (A.B)-invariant

21
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subspace. Our approach shows how this can be done. We show below how to

construct an (A.B)-invariant L(e)-subspace that converges asymptotically to the

almost (A.B)-invariant subspace. The desired input then follows on calculating

the feedback that makes the (A.B)-invartant L(e)-subspace AF(e)-invariant.

Recall from [19] that any almost (A.B)-invariant subspace Ia can be

represented as I a=I+$a where I is (A.B)-invariant and Sa is almost

(A.B)-controllable. Furthermore. any almost (A.B)-controllability subspace .a

can be represented as Sa =AS s where S 0 is the supremil (A.B)-controllability

subspace in 5a and 9 is a sliding subspace. By a construction in the proof ofa S

Proposition 4.5 in [18]. illustrated in the example below, we can find Ic e V

where I c=Q()St . Q(e) over T(e) and Q(O)=I. where I c is a coasting L(a)-subspace

whose associated eigenvalues approach -m as e-4O. The feedback F(e) that makes

I c an AF(e)-invariant L(e)-subspace can be calculated and provides the desired

input. Those eigenvalues of A F(E) , that correspond to 91s approach - as e-10.

This increases the magnitude of the feedback gains, and the generated inputs and

their derivatives approach impulses in the limit. The eigenvalues corresponding

to A can be assigned by the usual pole placement methods.
o

As an illustration of the procedure, consider the following example, which

contains the essential features of the general case:

Example 4.7: Let

A= [01 .B a . a where [I and r2 -

I is an almost (A.B)-invariant subspace, and in fact it is a sliding subspace.
a

2
Consider I = {V1 (e)'v 2 (e))' where vl(e) = [1 -e a ] and v2 (a) = [0 1 -2&'*.

Note that I is a coasting L(e)-subspace, i.e. it is (A.B)-invariant but not

(A.B)-controllable. Furthermore. vl(O) = '1, v2 (O) = v2 and Ye.-4 Also,

vi(a)=P(e)" ,_ for i=1.2. where

P(a) a 1

22
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gets its lower triangular entries from a Pascal triangle construction with

alternating signs (see (18]). Solving the equations

( ) lv ,2Ce)] - [vl(e)Iv2Ce)3gv(e)+BguC6.
gu(e ) - -FVe)Cvl.) v2Ce) ]

yields -F(e)=[2/e 1/a2 0]' and

AF(a) = A + EF(s) 1 0
0 1 0

with I being AF(a)-invariant. Note that the desired input u(t) = F(e)x(t). On

the other hand. the eigenvalues of AF(e) that correspond to I are both at -l/e.

They are stable and approach - as a-4).

IV.2 (A(&).B(a))-C~TR0LLABILITY AND ALMOS (A.B)-INVARIANME

We now proceed with the notion of (A(e).B(e))-controllability

L(a)-subspaces, adopting Wonham's definition [24] of (A.B)-controllability

subspaces. The notation <A(&)I1> will be used to denote i + A(e)l + A 2(6)

Definition 4.8: 51e C L(e) is an (A(e).B(e))-controllability subspace if there

exist mps F(&):Ln(&) -. Lm (a) and G(e):Lm(e) -. Lm (a) such that

51 = (<A(a)+B(e)F(e)jIm(B(e)G(e))>. We dlnote the family of

(A(a).B(a))-controllability L(e)-subspaces by R .

To put the above definition into a more usable form. consider the following

proposition, which simply restates results of Wonham [24) in the present

framework:

Proposition 4.9: (a) 91 C R iff there exists a nmap F(&):Ln(&)-ALm(&) such that

e = A(&)+B()F(&)I a> where 11 represents the range of B(a) over L(a).

(b) 91 aa <AF() > or every map F(a) C F(St.), where F(S.) represents the

23
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family of feedback matrices F(e) such that 9 is AF(&)-invariant.

Let A E R and I - . Then, it turns out that 5 is almoste -e eO n n

(A.B)-invariant. Finding inputs for steering trajectories arbitrarily close to

5n is done by calculating an F(a) such that is AF(e)-invariant and then

eigenvalues corresponding to 5 are continuous at E--0 and asymptotically stable.C

The following lemma and proposition show this:

Lenma 4.10: Given a pair (A.B), let 9 R and S . then V 0(l) x 0 t

d(xo, n)4 is O(e) and VT>O. 3 an input function u(t) s.t. d(xo(t.e).tn) is o(e)

for O<t r, where xo(t.e) is the trajectory defined by u(t) and the initial

condition xO.

Proof: Here we first need to find a trajectory in S which is 0(l) for O<t<r.

Find F(e) s.t. I e is AFe)-invariant and the eigenvalues of AF() corresponding

to 91e are all continuous at e--=O and asymptotically stable. Then V 0(1) x 1 6 '

x1 (t.&) C 91 t VO where xl(te) is the trajectory defined by the initial

condition x and the input specified by F(&)x(t). Since the eigenvalues of

AF(a) corresponding to SIL are all continuous at e=O and stable, xl(ta) is 0(1).

Therefore. d(xl(t.e).n) is 0(e) since S - Consider x2 (t.a). thelta ' s0&' a 6-40 n"

trajectory defined by the initial condition x2 =xo-xI. with x, 1e chosen such

that x2 is 0(a). Since the eigenvalues of AF(e) are continuous at e--O. VT>0

x2 (t.) is 0(a) for O<t r. Thus. d(xo(t,&),In) is 0(a) for O<t -r.

Proposition 4.11: Given a pair (A.B). let S C R and St - . then 9 C V
• " e-0 n n -

Proof: Pick some ">0 and apply Lemma 4.10. Thus. Bu(t) s.t. d(x(t.&). n ) is

4d(x.L) = infxCL X-X'I

,24 - -



0(e) for <t T. Then 3 &0 > 0 s.t. d(x(t.a). n) < 6 for O<t r and YeW 0 Use

x(T.e) as the initial condition to reapply Lemma 4.10 for the interval

r < t 2r. Find e1>0 s.t. leo&0 and d(x(t,el).5n) < 5 for T < t 2r.

p Repeated use of Lemma 4.10 achieves the desired result.

To illustrate these, consider the following example:

Exammle 4.12: LetA i i 0oi 0; 0 1 ?
0 0 0. B -- 0 end St -- Im + Im

Note that Sn = Im[l 0 0]+Im[O 0 1]' and it is an almost (A.B)-invariant

subspace. Let F(a) a [-3 0 -2/a). then S is AF(e)-invariant and the

elgenvalues corresponding to I are at -2. -4, asymptotically stable and 0(l).

./

Pick the initial state x0 of Lemma 4.10 as x0 = [l 0 0]'. Let x, = El a 0]' C

1 . Then. x 1(t.e ) = -e -t+2e - 2 t -e -t 2e-2t -ae-t -e-2t]. 'E ,. and

d(xI(t.&).gn) is clearly O(e) for any finite -r. On the other hand. x2 = 10 -c

0]' and x2(t.&) = [2&e-2t a2e-2t -e2e-2t ]' Thus, d(xo(t),Stn) is O(c). So. in

the spirit of Proposition 4.11. this may be bounded by any 6 for any given T by

picking an appropriate e= 0. Then, using x(T.) as the new initial state and

repeated use of this procedure achieves the desired result.

In this section, we exmined the notions of almost (A.B)-invariant and

almost (A.B)-controllability subspaces in the framework that we have developed

in this paper and [18]. We outlined a method for calculating inputs that steer

trajectories arbitrarily close to almost (A.B)-invariant subspaces or

equivalently force the eigenvalues corresponding to sliding parts of almost

(A.B)-controllability subspaces to approach -a. We also analyzed the properties

of limits of elements in V and R as a-40 from a trajectory point of view.
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V. CON4CLUS IONS

In this paper, we have developed an algebraic approach to high gain

controls for linear dynamic systems with varying orders of reachability. Based

on this approach, we addressed the issues of high gain inputs for reaching

target states, high gain feedback for pole placement and high gain inputs for

steering trajectories arbitrarily close to almost (A.B)-invariant subspaces and

almost (AB)-controllability subspaces.

The results presented here suggest several directions for further research.

It is of interest to analyze the orders of feedback gains for shifting the

limiting elgenvalues as a-O in the more general case of proper systems, rather

than just systems over T(e). Intuitively, If a mode is a-reachable but

"I/a-observable", in that it has a 1/a coupling to other states, then it should

be possible to shift its eigenvalue by 0(l) using 0(l) feedback gain. A related

problem is that of changing the dynamics of a given continuous time system that

has multiple time scales [1.2] without changing its time scale structure. This

would involve shifting an eigenvalue X, where Vaj is continuous at -. by some

ad . a>O.

A key problem that bears attention is that of parametrizing systems over P.

Two heuristic methods could be suggested for this. One is to recognize snmall

entries in the matrix. either isolated or added to another entry, and replace

these with powers of a. Another method for parametrization could come from

numerical reachability tests [3]. where for example small singular values at

different stages of a test may be replaced by (appropriate powers of) a.

It will be important to develop dual results for systems with observations

y[k] = C(a)x[k] or y(t) = C(a)x(t). This could then lead to research on

connections to optimal control [25,26]. realization theory, balanced

realizations, [15]. and so on.
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Very interesting and important generalizations my be expected from more

explicit connection to and exploitation of the rather large literature on

systems over rings, as represented in [6-9] for example. In particular.

extensions to problems involving outputs will undoubtedly emerge from this.
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APPENDIX

Here we develop an algorithm to recover a standard form without forming the

reachability matrix and computing Its Smith decomposition. The proofs and

details on the algorithm are presented in [18]. Our algorithm can only deal

with a pair (A(e).B(a)) over T(a). so this restriction is assumed here. The

structure of a pair (A(&).B(&)) in standard form is then as follows:

o.o(-) A0 .1(&) . O.k(e)}PO

A(&) e aA.o(&) A1.1 (e) .k(O) (A.la)

k k-i
' k.O(') e- Ak.l(e) Ak.k(&))Pk

BOWa )PO

B(&)= el(a) )Pl (A.lb)

Proposition A.1 : An a -reachable pair (A(&).B(&)) over T(a) is in proper

standard form with indices po . . . . . pk iff A(&) and B(e) satisfy the following

" condition: Let Fi(&) = DI(&)A(a)Di(e). Gi(&) = Di1(a)B(a) where D,(e) =

diagI...... a iI then thm reachable subspace of (Fi(O).,i(O)) is
p0  Pi + . " +

I Im = Intl. for V1 CO(0 ...k].
0

Definition A.2: LetO.o(&)  AO.l(a) • o.i (e)' )pO  '
&A A,.,(&) .1 1 a . .

A i(.e)A' ' (.2a)

aiA (6) a At.,(&) A )P.
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Bo(a)' )Po

Bi(e) = ~(A.2b)

eisi {e) }p1

then (AI(#).B 1 (e)) is the ti-reachable subsystem 9. (A(e).B(a)) with indices no,

......... •

As with the submodule structure, the e -reachable subsystem contains all

ei-reachable subsystems for J = 0..... i-. The subsystems are layered with

weak couplings of different orders of a between each component. Also.

ge

ffU 1.1n-n

lei tun (e)T (e) 0 & i+ Tn ni 0 (A.3)

and the sequence {ei (e)T (e) a T (en-ni()} converges to I0 in k steps. In

other words, the to-reachable submiodules of the aJ-reachable subsystems

approximate the e -reachable submodule of the system in standard form upto eil

accuracy. We use this in Algorithm A.3 below.

Computation of the reachability mtrix is very costly. One has to

calculate Ai (e)B(a) for all the terms in the expansions of A(&) and B(a). Thus.

it is desirable to work directly with the pair (A(e).B(e)). The following

.1algorithm takes advantage of Proposition A.1 to recover the a -reachability

indices. At every step, the reachable subspace of a pair. evaluated at &--0. is

computed. Then the pair is updated by an appropriate scaling of the unreachable

part by IA. The algorithm uses the higher order coefficients of the asymptotic

expansions only when necessary. Also. it is possible to recover the actual

Smith decomposition of the reachability matrix from the algorithm. if the

transformations used in the algorithm are restricted to be permutation matrices

and lower triangular matrices. though this restriction compromises numerical
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stability (see [18]).

Algorithm A.3:

Initialize: Ao(e) = A(e), Bo(e) = B(e). i = 0

Step i:

1. Find Ui such that

U A (O)U 1 2 1 .U- I B (0)

with (A.BI) reachable. This determines ni.

2. If ni  n then go to End. else continue.

3. Let Ai+i e) a D 1 (e)UI AI(e)UIDI(e). Bi~l= D1 (e)U i Bice)

where Di(e) = disg{In, CI } .

(It is not necessary to carry out the computation for all the

coefficients of A,(e) and B,(&): see Note 1 in [18].)

4. Increment t. go to Step i.

End: k = i. the system is ek-reachable with indices no... n.

a.

-- 3.
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